Dynamics and Geochemical Evolution of Seawater Intruding into a Coastal Aquifer

O. Sivan, Y. Yechieli, B. Herut, B. Lazar

1Institute of Earth Sciences, Hebrew University, Jerusalem 91904, Israel
2Geological Survey of Israel, Jerusalem 95501, Israel
3Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa 31080, Israel
*Corresponding author: sivan@vms.huji.ac.il Tel: 972-2-6586535 Fax: 972-2-5662581

Key words: seawater, intrusion, evolution, dynamics, cations exchange

We present an attempt to estimate the time scale for seawater intrusion into a coastal aquifer and the operating geochemical processes by using the natural distribution of cosmogenic isotopes and changes in the major ion composition of the waters.

Saline and brackish groundwaters were sampled from the Israeli coastal aquifer. All samples were analyzed for their chemical composition, stable carbon and oxygen isotopes, 14C$_{DIC}$ (14C in the dissolved inorganic carbon) and tritium activity.

The substantial tritium content in the saline groundwaters suggests that Mediterranean seawater penetrated inland and traveled toward the shore to a distance of at least 100-200 meter only very recently (< 40 years). The wide range of 14C$_{DIC}$ activities in the saline area (40-90 pmc) was achieved from diagenetic and transport processes in this zone and not from aging.

The high concentrations of alkalinity, DIC, Ca$^{2+}$ and Sr$^{2+}$ indicate that the main diagenetic processes in this zone were oxidation of organic carbon and cations exchange. Most of the groundwaters at the fresh-saline water interface represent conservative mixing between the saline groundwater and the fresh groundwater of the aquifer. In some cases there is an additional ion exchange in the mixing zone.